
THE JAMES WEBB SPACE TELESCOPE

instruments

Science and Technology **Facilities Council**

Webb will:

• Search for light from the first stars and galaxies to form after the Big Bang.

Primary

mirror

Secondary

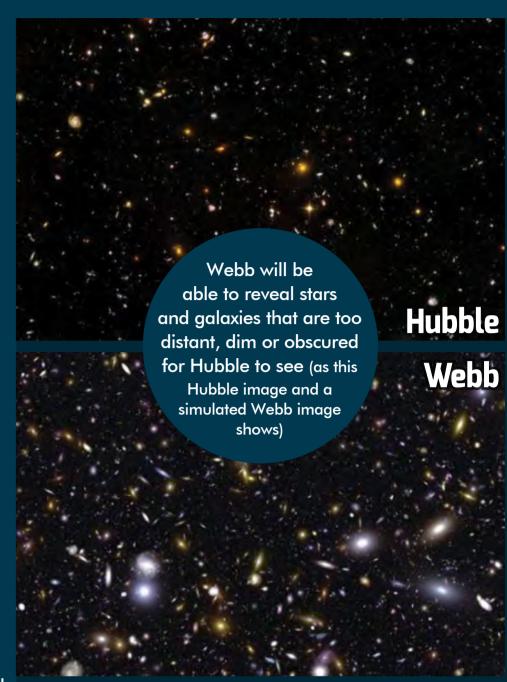
mirror

 Study the formation and evolution of galaxies.

Sunshield

 Study planetary systems and the origins of life.

The universe in infrared


All of the Webb's instruments will observe infrared light. One advantage of this is that infrared can pass through the interstellar dust that blocks visible light.

> Another advantage is that visible light travelling from a distant star is stretched on its way to us. The light's wavelength gets longer and shifts into the infrared part of the spectrum (known as redshift).

> > Three of the Webb's detectors are tuned to the near infrared. One of Webb most important detectors, the Mid InfraRed Instrument (MIRI), has been designed and built by a UK-led

> > > consortium

including STFC.

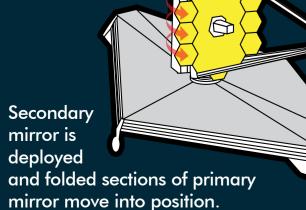
Looking back in time

Light travels very fast, but its speed is finite and can take a long time to reach us. As a result, the more distant an object is, the further back in time we are looking. Hubble can see back to the 'toddler' stage of the universe when it was barely 1 billion years old. Webb will be able to capture light from universe's 'baby' stage when the first stars were born after the Big Bang.

Cold side

Copyright: STFC, Ben

Telescope origami


Webb is too big to be launched in its operational configuration, so it will unfold in space.

Launch configuration.

Solar array is deployed and sunshield unfolds.

Sunshield extends

layers are raised and separated.

Gathering light

Although it can operate in optical wavelengths like Hubble, Webb's talent will be capturing infrared light. The enormous primary mirror captures the light from distant galaxies, stars and planets and concentrates it onto the secondary mirror. This focuses the light into the telescope's scientific instruments

To the 'Antenna Sun Hubble's orbit 570km Unlike Hubble, which orbits the Earth, Webb will sit at an area in space called a Lagrange point. Webb will occupy Lagrange 2, which is a region about 1.5million km from Earth, where the Sun's gravity and Earth's gravity cancel each other out –

This means that Webb isn't subjected to the same extreme heating and cooling cycles as an Earth-orbiting craft.

Moon's orbit

384,400km

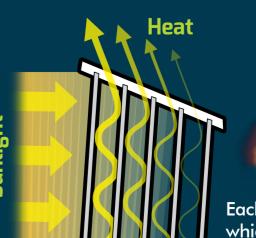
Webb will not be exactly at the L2 point, but circle around it in a halo orbit. The mirror The mirror has about seven times the

allowing the craft to remain

Webb

relatively stationary.

Spacecraft 'bus'


with control systems

light-collecting area of Hubble and has a field of view more than 15 times larger. Hubble Webb 2.4 metres 6.5 metres

telescope and, since infrared radiation is heat, it has to be shielded from the Sun's radiation.

The tennis court-size sunshield is made of five layers of metallised plastic about as thick as a human hair.

Hot side 85°C

Each layer blocks and deflects some heat, which is then vented away from the telescope.