

WHAT IS THIS RESOURCE MADE UP OF?

Six separate sections have been created with each section then further split into two parts; a 'Discover' section and an 'Activity' section. The 'Discover' sections consist of background knowledge and the 'Activity' sections contain activities for students to try out in the classroom.

The six sections are:

- 1. The Lunar surface
- 2. How the Moon was formed
- 3. The Moon and Earth
- 4. How we went to the Moon
- 5. Will we live on the Moon?
- 6. How to look at the Moon.

I AM NOT AN EXPERT IN ASTRONOMY, IS THIS PACK FOR ME?

Absolutely! We are not expecting you to be an expert at all. This pack just provides the framework for you and your students to find out more about the science curriculum in a real world setting using astronomy as a context and to learn about astronomy and space science together.

WILL I NEED LOTS OF EQUIPMENT FOR THIS RESOURCE?

No. We know how difficult it is to source equipment for a class full of students so everything that we have suggested uses things you should already have in your classrooms or can access digitally for free.

DOES THIS DIRECTLY LINK TO THE NATIONAL CURRICULUM?

Yes, within each section. The focus of the resource is on science within a real world astronomy context so therefore links to aspects of the science curriculum. However, the resource also covers cross-curriculum topics such as English, Maths and Computing.

HOW IS IT BEST TO USE THE PACK?

That is completely up to you. If you want to brush up on your knowledge then you can use the 'Discover' sections just for you and use the 'Activity' sections to set tasks for the students. Alternatively you can give your students a whole section to work through independently, so that they may develop their scientific skills.

WHERE CAN I GET INFORMATION TO FURTHER MY KNOWLEDGE OF SPACE?

The National Space Academy works directly with teachers to support subject knowledge enhancement, confidence building, and curriculum development - from one-day courses for individual teachers to full consultancy for new schools looking to develop an exciting STEM offer. They have experience in supporting GCSE, A Level, Scottish Standards and Highers and International Baccalaureate curricula within the UK and other national curricula overseas. Developing subject knowledge and understanding with memorable hands on activities is a mainstay of their student programmes.

WHAT CAN I USE AS A FOLLOW ON FROM THIS ACTIVITY?

If you are looking for even more resources including classroom activities, videos, podcasts and vodcasts then check out the National Space Academy website. You can also find information here about how to come and visit – an excellent follow up to this resource.

IS THERE A WAY TO SHOW STFC THE WORK THAT IS PRODUCED AS PART OF THIS RESOURCE?

Yes please do, we would love to see it. You can do this by using the social media tag #STFC_HOM or emailing us on

STFCPublicEngagementTeam@stfc.ac.uk

DISCOVER TO THE STATE OF THE ST

HANDS ON THE MOON

The Moon is the Earth's largest natural satellite and is the brightest object in the night sky after the Sun. It is the only place in the Solar System, other than Earth, that humans have visited.

Ocean of Storm

Sea of

Moisture

Sea of

Clouds

Tychc crate:

Plato J crater

Sea of
Rain

Mons
Huygens
Kepler
Copernicus
Crater

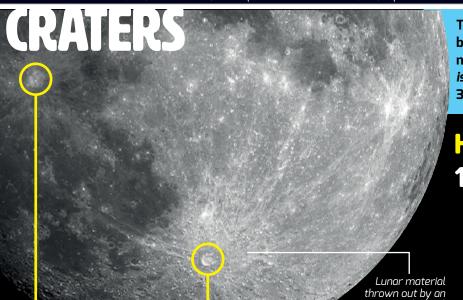
Sea of Serenity

Sea of Vapour

> Sea of Sea of Tranquility Crisis

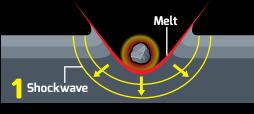
> > Sea of Fertility

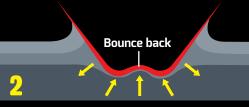
THE HIDDEN SIDE OF THE MOON

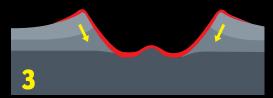

The Moon takes 27.3 days to revolve once – the same amount of time it takes for the Moon to orbit the Earth. This is why we only ever see one side of the Moon. Spacecraft have seen its hidden side and it looks very different from the Moon we are used to seeing!

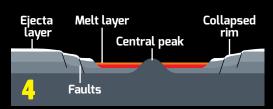
The lighter coloured areas are the lunar highlands, called terrae (which means 'land' in latin) and the dark areas are relatively flat plains, called maria (which means 'sea'), that are actually ancient flows of lava.

Although it is difficult
to see when you look up
at the Moon, the lunar
surface is actually full of
interesting features. It is
covered with craters created by
millions of years of impacts with
meteorites, asteroids and comets.


The Moon is famous for its craters and for being made out of cheese. OK, so the Moon is not actually made of cheese, but its surface is covered in craters – in fact there are more 3 trillion (3 million million) of them!


Most craters are formed by asteroid/meteor impacts. Some are tiny (little more than tiny dents in the lunar regolith) and were formed by small meteroids. Larger craters were made by impacts with objects big enough to disturb the lunar bedrock.


HOW CRATERS ARE FORMED


- A large space rock impacts the surface and explodes. A large amount of lunar material is melted and thrown outwards. The crust beneath and around the impact site is squashed downwards.
- 2 The crust 'bounces' back up forming a peak in the middle of the crater.
- **3** The peak and rim collapse.
- As it settles back down, the melted lunar rock levels out, cools and cracks – forming faults.

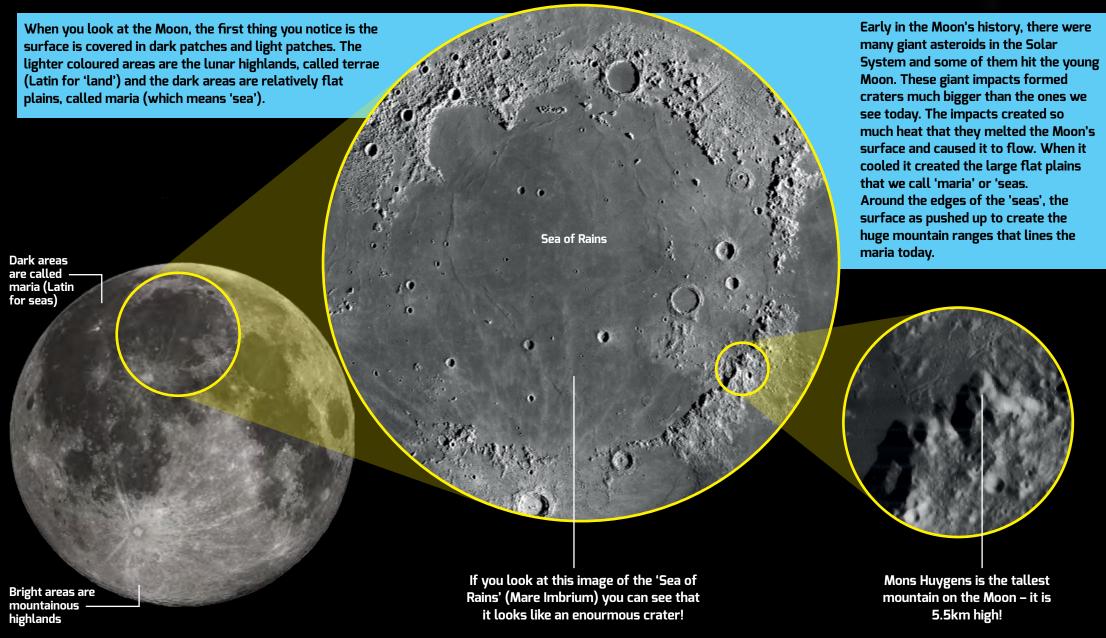
Look at the Tycho and Copernicus craters and notice how similar they are. Can you identify any of the features?

After billions of years of being pummeled by meteorites and asteroids, the lunar surface is covered in a fine-grained layer dust called regolith, which can be up to 20 metres thick.

The Copernicus crater is 93km wide and is visible with the naked eye from Earth. It was formed about 900 million years ago by an asteroid up to 10 kilometres across.

impact (ejécta)

surface as a 'ray system'.


settles on the

The Tycho crater is 86km wide and has a ray system that spreads out as far as 1,500km.

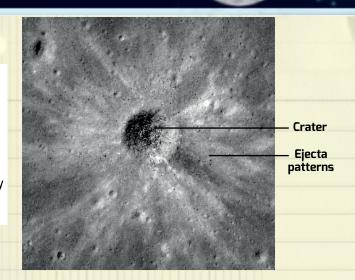
DISCOVER THE 3 LINE SILE OF CARE

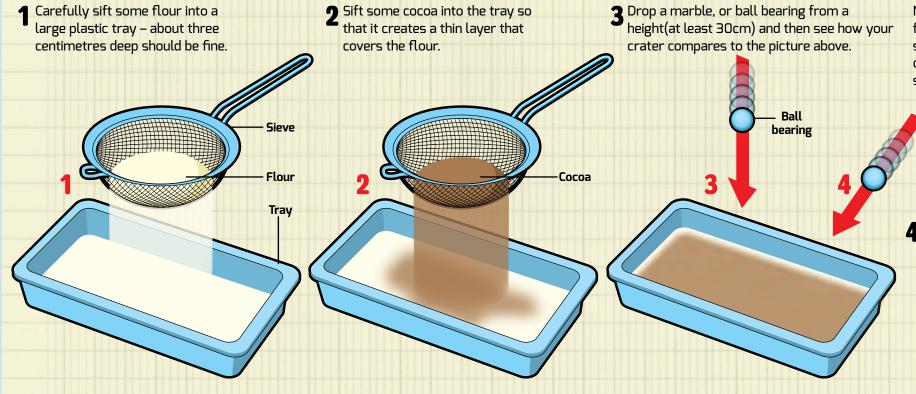
HANDS ON THE MOON

SEAS AND MOUNTAINS

ACTIVITY MAKE YOUR 4 OWN CERTER

ACTIVITY


1 A MAKE AN IMPACT CRATER

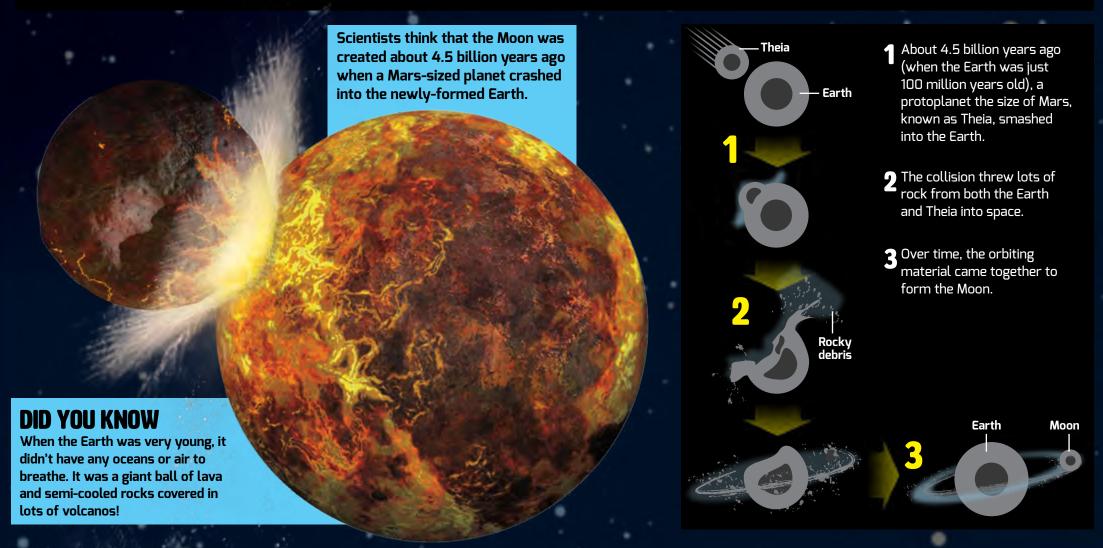

The Moon's craters were formed when space rocks, such as astreroids and meteroites, smashed into the Lunar surface. You can make your own craters with some flour, cocoa power and a ball bearing. The flour will represent Lunar soil (regolith) and the cocoa represents the surface layer of regolith that has been darkened by exposure to the Sun.

PREDICTIONS

Before you make any craters, try to predict what will happen to the crater when:

- You drop the ball from a low height.
- You drop the ball from higher up.
- You drop it from an angle.
- If you have two different size ball bearings (one heavy and one light), but you drop them from the same height, will their craters be the same or different?

Now try dropping your ball from different heights and see how that affects the depth of the crater and the spread of ejecta.


You could also try (gently) throwing the ball into the tray from an angle and seeing what happens. Not all meteorites hit the Moon straight on – see if you can find a picture of a Lunar crater than matches your results.

DISCOVER - CONTINUE - MODE - MANDS ON THE MODE - MO

Many of the planets in our Solar System have their own moons – the gas giant Jupiter has 69! Some of these moons started off as asteroids or other giant space rocks that passed too close and were captured by the planet's gravity. Others were formed from lots of small rocks and dust

that orbited the planet and, over time, clumped together to form one large rocky, or sometimes icy, moon.

Scientists think that the Earth got its moon in a much more violent way than most planets – in a sort of giant cosmic car crash!

2.1 NCCVER WHAT THE

The Moon is much more than just a big ball of rock – like the Earth, it has a crust, a mantle and core. It even has an atmosphere, but you wouldn't want to try to breathe it!

CRUST

The crust is about 50 km thick (in some places it is much thinner, or thicker) and is made up of a mixture of oxygen, silicon, magnesium, iron, and other minerals.

MANTLE -

The mantle is made of solid rock and is about 1.400 km thick.

OUTER CORE

The outer core is liquid and made of mostly iron. It is about 650 km in diameter.

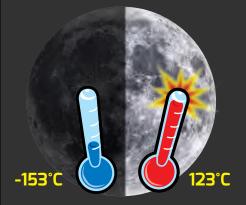
LOWER MANTLE

The lower mantle is made of partly melted rock and is about 150 km thick.

INNER CORE

The inner core is solid ball of iron about 480 km wide. It's temperature is about 1400°C.

ATMOSPHERE

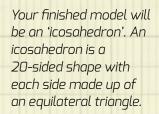

The Moon does have an atmosphere but it is very thin – more than a million million times less dense than the Earth's. This means that the footprints left behind by the Apollo astronauts could last for millions of years!

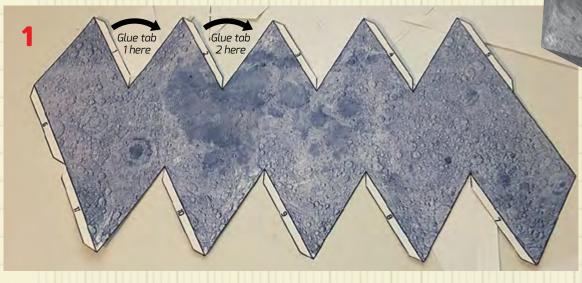
After billions of years of being pummeled by meteorites and asteroids, the lunar surface is covered in a fine-grained layer dust called regolith, which can be up to 20 metres thick. It is excellent for making footprints in – as the Apollo astronauts found out!

EXTREME TEMPERATURES

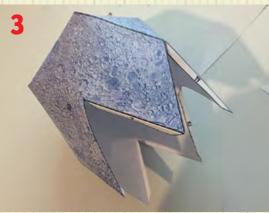
The Moon takes 27 days to rotate once on its axis. So most places on the surface experience about 13 days of sunlight, 13 days of darkness and one day of twilight.

Its thin atmosphere means that temperatures vary wildly between the dark and light sides.

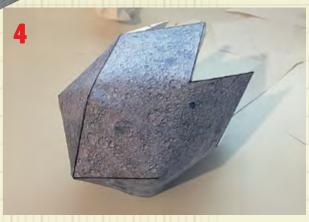

2.2 YOUR OWN MCON


ACTIVITY

2 A MAKE YOUR OWN MOON


Print out, or photocopy,the template on the next page and carefully cut it out.

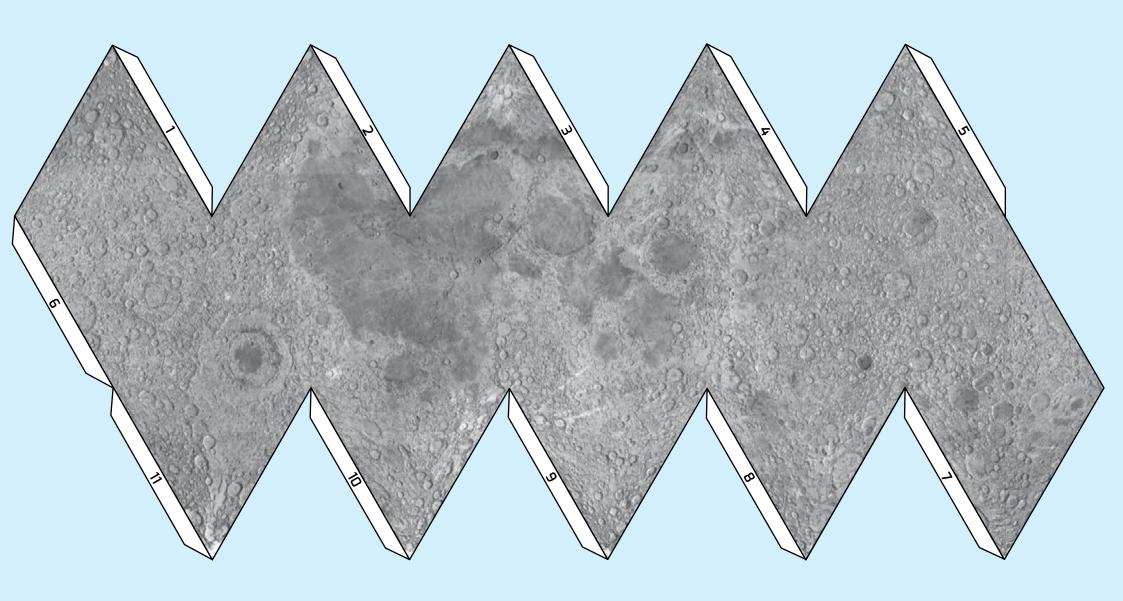
Apply a little glue to tab number one and gently fold it around to attach to the tabless side opposite. Do the same for tab number two.



Work your way around until tab number five has been glued to the tabless side near tab number one – and tab six has been glued to the opposite side (this sounds complicated but, as you glue each tab down, it becomes obvious where the next tab glues to).

Your Moon model should now look like diagram 3.

Work your way through the remaining numbers to complete your model.



2.3 YOUR OWN MCON

MAKE YOUR OWN MOON TEMPLATE

The Moon is the Earth's only permanent natural satellite. Although it looks quite close when you look at it in the night sky, it actually orbits at a distance of about 385,000 kilometres (238,856 miles). The Moon is about one quarter the diameter of the Earth, which makes it one of the biggest moons in the Solar System and the biggest compared to its home planet. So, although it is a long way off, because the Moon is so big, it really makes its presence felt here on Earth!

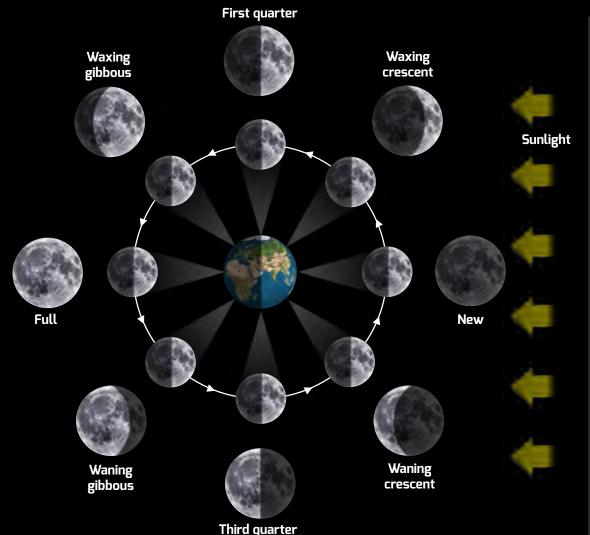
This amazing image of the Earth and the Moon was taken by a NASA spacecraft called OSIRIS-REx when it was about 3.2 million miles from Earth. Did you think the Moon was close to Earth? Just goes to show how big the Solar System is!

The Moon is about one quarter the diameter of the Earth. This makes it one of the biggest moons in the Solar System and the biggest compared to its host planet.

385,000 km

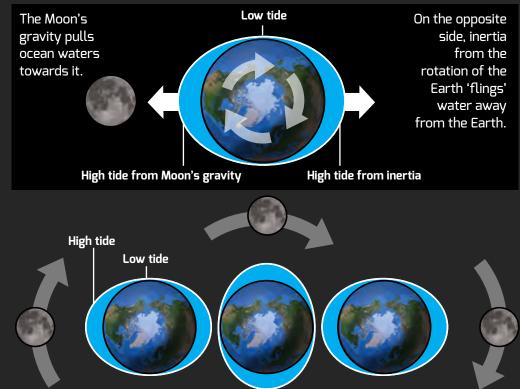
The Moon is about 384,000 km from the Earth and is slowly moving further away (about 3.8 cm a year). When it was first formed it was only 23,000 km away.

3.1 NOCER THE


HANDS ON THE MOON

PHASES OF THE MOON

As the Moon orbits the Earth we see different amounts of its sunlit side. Sometimes we see a bright circle, we call this a full Moon. Sometimes we can't see any of the sunlit side and we call this a new Moon. As it moves from new to full Moon we say it is waxing and after a full Moon is starts to wane until it becomes a new Moon again.


The Moon takes 27.3 days to orbit the Earth. The Moon does not shine by itself – it reflects light from the Sun towards the Earth. As the Moon orbits the Earth we see different amounts of its surface and so the Moon appears to change shape during a month. These are called lunar phases.

We have to wait 29.5 days to see the same phase of the Moon again, this is a few days longer than the time it takes the Moon to orbit the Earth. The Earth is also orbiting the Sun during that time and we must wait for the Moon to be in the right place so we see the same phase again.

THE TIDES

As well as providing a shape-shifting light show, as the Moon orbits the Earth it also creates the tides that make the sea rise and fall twice a day.

As the Moon orbits the Earth, its gravity pulls the ocean along with it – giving us two high tides a day.

3 DISCOVER THE 2 NO CONTRACTOR

ECLIPSES

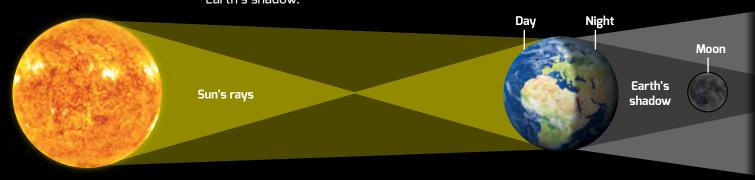
The orbit of the Moon is not flat, it rises and dips as it makes its way around the Earth. Sometimes the new and full moons are a little above the line between the Earth and the Sun and sometimes a little below it.

Sometimes the Moon can be found in between the Sun and the Earth and it casts a shadow on the Earth – this is a solar eclipse. When the Moon moves into the shadow of the Earth we call this a lunar eclipse.

SOLAR ECLIPSE

A solar eclipse only occurs when the Sun, Moon and Earth are all in a line and the Moon passes in front of the Sun.

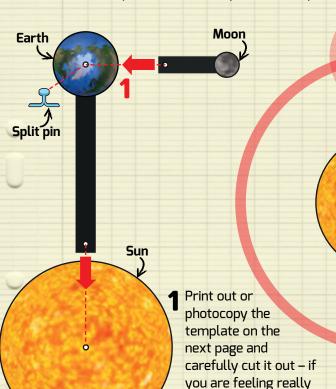
TOTAL COSMIC COINCIDENCE


The Sun's diameter is about 400 times larger than that of the Moon but, by coincidence, the Sun is also about 400 times further away. This makes the Sun and Moon appear to be same size as seen from Earth. If the Moon was a little bit further away from the Earth (as it will be in the future), the Moon wouldn't be big enough to cover the Sun and total solar eclipses wouldn't happen at all!

This is what a total solar eclipse looks like.

LUNAR ECLIPSE

A lunar eclipse happens when the Moon moves behind the Earth and passes into the Earth's shadow. During a lunar eclipse, the Moon turns a rusty red colour because the sunlight passing through the Earth's atmosphere gets filtered and bent towards the Moon.



3.3 NUFERICATION

3 A MAKE AN ORBIT MODEL

You can get a good idea of how the Moon orbits the Earth and the Earth orbits the Sun by building this model. When you've built it, have a play and see if you can figure out where in their orbits a Solar eclipse and Lunar eclipse will take place.

creative, you can colour

in your own Moon, Earth

and Sun. Use split pins to

Earth and then the Earth

attach the Moon to the

to the Sun.

2 To see how the Moon orbits the Earth, rotate the Moon.

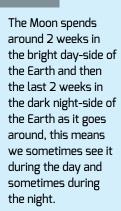
Moon orbit

Earth orbit

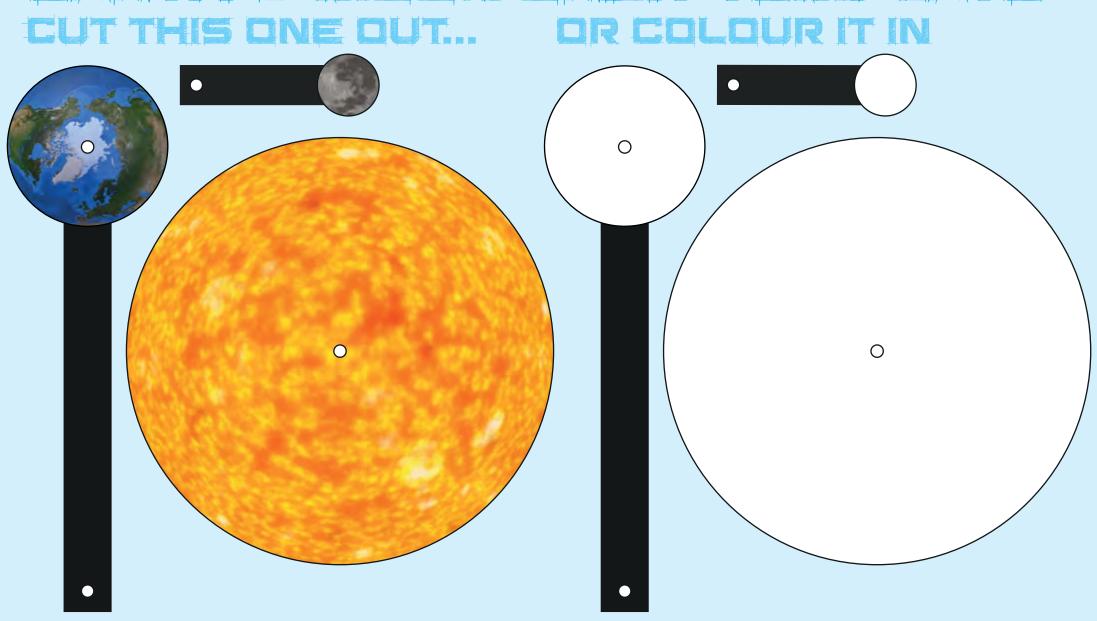

3 To see how the Earth orbits the Sun, rotate the Earth.

ACTIVITY

3B PHASES OF THE MOON


In this activity you are going to pretend that you are the Earth.

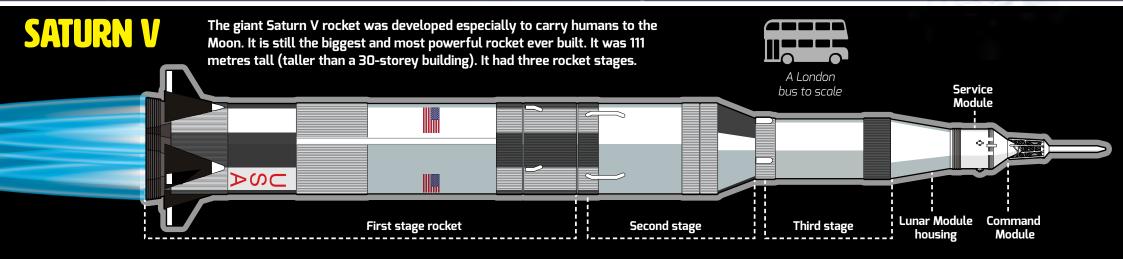
- 1 Stand in the light of a projector (the Sun), holding a ball (your Moon) at arm's length, just above your head. Mark a 'face' on the ball. Turn slowly on the spot. This represents one lunar orbit about one month.
- **2** As you turn look at the brightness of the Moon. What do you see? Is it the same all the time or does the pattern of light and dark change as you turn?


As you go round, the 'face' on the Moon will always be pointing towards us. It turns on its axis once in the same time it takes to orbit the Earth once (27.3 days). This is why we only ever see one side of the Moon. If you are not convinced that the Moon must turn, make a mark on the opposite side of the ball from the 'face' you drew.

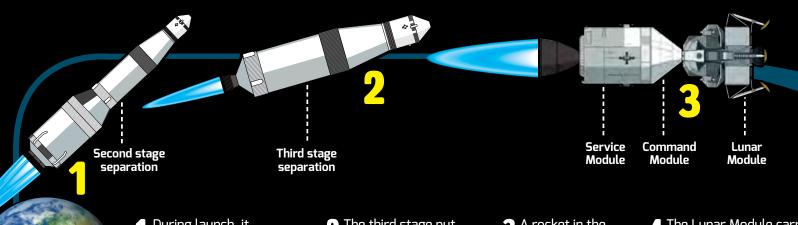
Have this mark
pointing towards the
projector. As you turn
with the mark always
facing the projector, you
eventually get to see all of the
ball. If the Moon did not slowly
turn on its axis as it orbited the
Earth we would eventually see all
of the Moon. But we don't, we
only ever see one side of the
Moon – to see the other side
requires a spacecraft.

3.4 INVESTATION

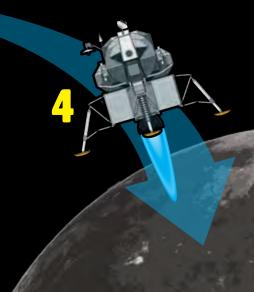
EARTH & MOON ORBIT TEMPLATE



DISCOVER - COMPANY OF THE PARTY OF THE PARTY



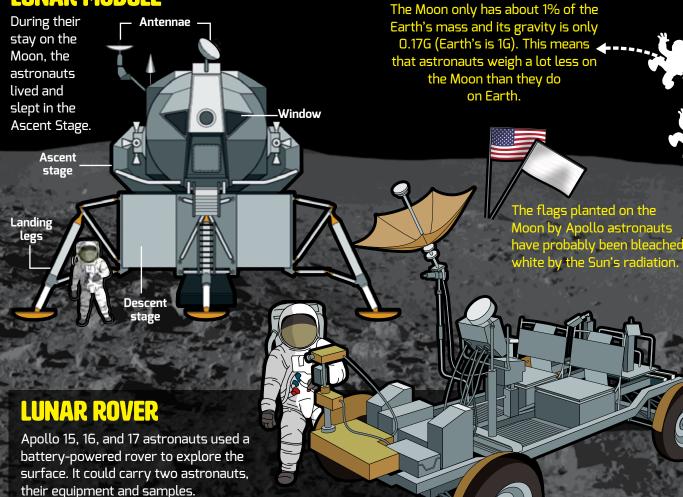
OSCOVER HOW WE WENT OTO THE MODICION



- 1 During launch, it jettisoned each stage to shed weight. Each stage pushed the rocket further into space.
- 2 The third stage put the rocket into orbit around the Earth and then pushed it towards the Moon.
- A rocket in the Service Module put the craft into orbit around the Moon.
- The Lunar Module carried two astronauts onto the Moon's surface. One astronaut stayed behind in the Command Module.

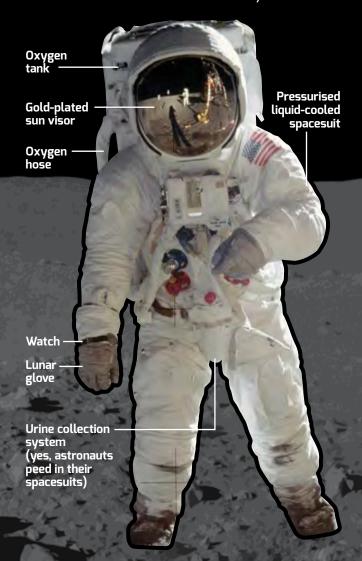
It took 2 days, 3 hours and 51 minutes for Apollo 11 to travel from Earth to Lunar orbit.

OISCOVER HOW WE 2 EXPLORED THE MODIN



The Moon's lack of atmosphere and low gravity make it a very difficult place to explore. The Lunar Module was nice and safe and even had windows, but to explore the surface, astronauts needed the protection of their spacesuits, which were slow to walk in. From Apollo 15, astronauts were able to drive around the lunar surface in their very own Moon Buggy!

LUNAR MODULE


In total, the rovers travelled 90 km

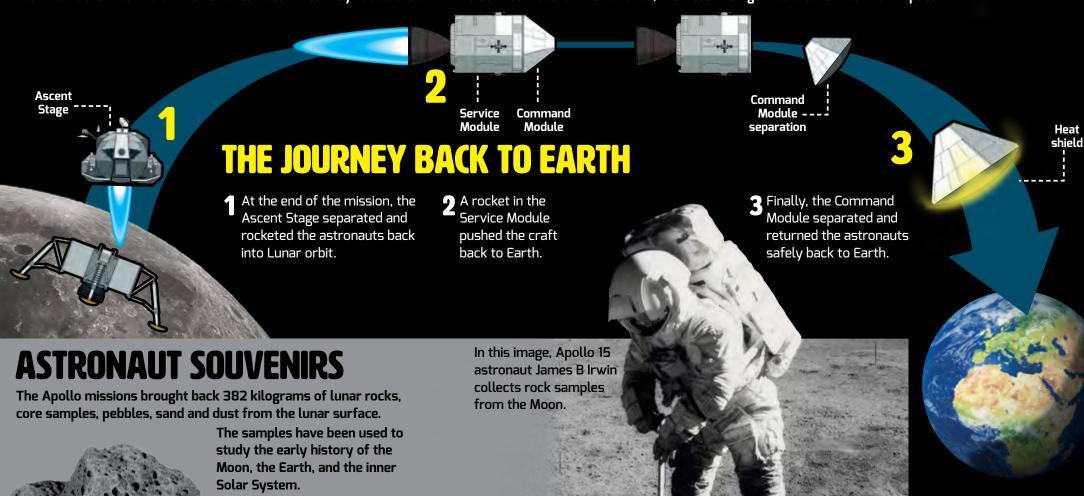
across the lunar surface.

LUNAR SPACESUIT

This picture of "Buzz" Aldrin was taken by Neil Armstrong (if you look carefully, you can see Neil's reflection in Buzz's visor)

OSCOVER HOW WE WENT 3 BACK TO EARTH

The STFC runs the UK's only 'Lunar

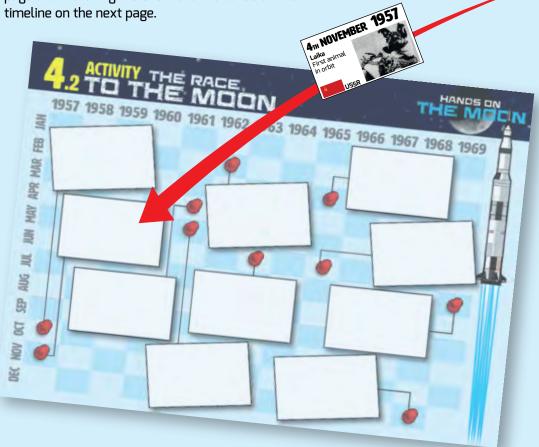

Loans' scheme, which allows schools and scientific organisations to borrow

samples of the Lunar material brought

back by the Apollo astronauts.

When it came time to return to Earth, the astronauts fired up the rockets in the Ascent Stage of the Lunar Lander – they didn't need the Landing Stage any more, so this was left behind on the Lunar surface. Once they had docked with the Service Module in Lunar orbit, the Ascent Stage was also left behind in space.

Only 12 men walked on the Moon between 1969 and 1972 – we haven't been back since.


1963

1965

ACTIVITY THE RACE 1 TO THE RACE NOOLOGIO

ACTIVITY **4** A SPACE RACE TIMELINE

The Space Race was a competition between the US and the Soviet Union to be the first country to go into space and to the Moon. The Soviet Union was the first country to put an artificial satellite into space and the first to put a man into space, but eventually the US won the race by being the first country to put a man on the Moon. Get to know the many milestones the Space Race by photocopying, or printing out, the Space Race cards on this page and matching the events to the dates on the timeline on the next page.

4TH OCTOBER

USSR

1957

Sputnik 1 First satellite in space

16TH JUNE

Valentina Tereshkova First woman in space

1957 4_{TH} **NOVEMBER**

Laika First animal in orbit

16TH MARCH

USSR

Alexi Leonov First space walk

12_{TH} APRIL

Yuri Gagarin First man in space

3RD JUNE

Ed White First US space walk

5th MAY

USSR

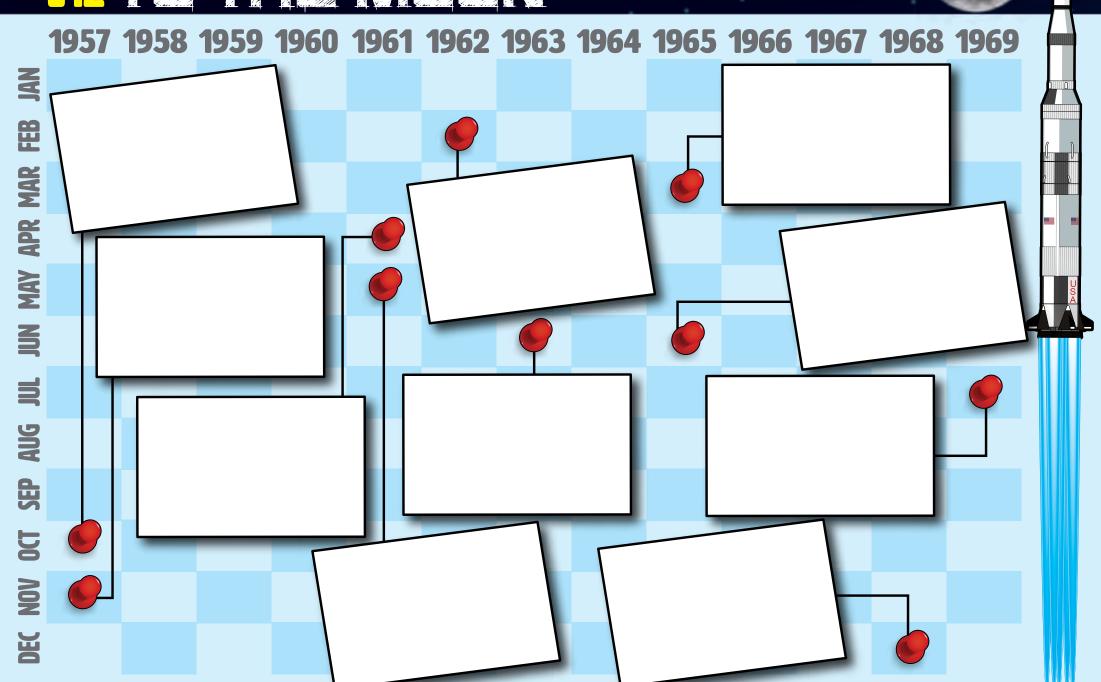
Alan **Shephard** First US man in space

1961

1961

Apollo 8 Orbits the Moon

20TH FEBRUARY 1962


John Glenn Orbits Earth 3 times

Apollo 11 First humans on the Moon

DISCOVER WILL WILL IN THE CONTROL OF THE CONTROL OF

HANDS ON THE MOON

The last time a human set foot on the Moon was in 1972. Today, a number of countries have plans to not only send astronauts back to the Moon but also set up permanent bases in pext few decades.

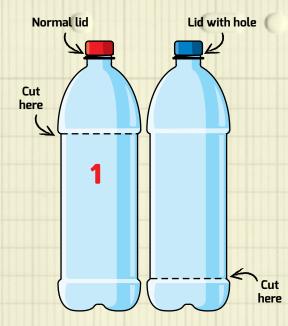
5 DISCOVER WILL WE LIVE 10 ON THE MODON!

The Moon is a long way from Earth so, if anyone is going to live there permanently, a Lunar colony will need to be self-sufficient. We know that there are reserves of water (in the form of ice) on the Moon, but where would Lunar colonists get their food and energy from? Here are a few of the things a Moon base would need.

1 Launch vehicle: Lunar colonists won't want to be trapped on the Moon so they will need a launch vehicle that can carry them into space and transport supplies to the lunar surface.

2 Lunar habitat: This will need to be strong enough to protect astronauts from asteroids and solar radiation. There are lots of ideas about the best sort of design – from inflatable pods and giant domes to bases that are built underground.

- **3 Exercise:** The Moon's gravity is much weaker than the Earth's so, to prevent muscle and bone weakness, colonists will need to do lots of exercise.
- Science labs: Just like astronauts on the International Space Station, Moon colonists will do lots of science experiments.
- **5 Food:** Colonists won't want to rely on food being sent from Earth so they will grow their own in specially designed hydroponics bays.
- **6 Airlock**: This is a pressurised doorway that allows colonists to exit the habitat.
- 7 Lunar vehicles: Colonists will need vehicles to explore the Lunar surface and to travel between different parts of the Moon base.
- Power: Huge banks of solar panels could provide power to the habitats. These might be best placed near the Moon's polar regions where there is more sunlight.


HANDS ON THE MOON

5 A MAKE A BIODOME

If humans are going to live long-term on the Moon or on Mars, we will need food, water and air to breathe. A biodome is a self-sustaining habitat that provides everything it needs by recyling water, growing food and creating its own oxygen. You can make your own biodome using two 2 litre bottles.


- 1 Cut the bottles where shown in the diagram (your teacher may do this for you) and make sure the bottle with the bottom cut off is the one with a lid that has a hole drilled through it.
- **2** Turn the cut bottle with the lid that has a hole upside down and put it in the bottle with the top cut off.
- 3 Fill the bottom up with water so it comes to just below the lid and feed the cotton rope through the hole so that it dips in the water. Tape the rope into place.

- **4** Use black tape to tape around the join.
- **5** Fill the top bottle with soil until it is one third full. Plant a couple of plants and add some moss and twigs to the bottom. If you want to add woodlice at this point you can.
- 6 Take the cut off top bottle with a full lid and use black tape to attach it to the top. Your biodome is complete and now you can monitor your habitat!

QUESTIONS TO RESEARCH

- How will water cycle around the bio dome?
- How will oxygen be produced?
- Why do we need the cotton rope to be dipping into the water?
- Why will you get 'fog' on the outside of the bio dome?

DISCOVER - CONTROL CON

You don't need to visit the Moon to enjoy it and you don't need a telescope either!

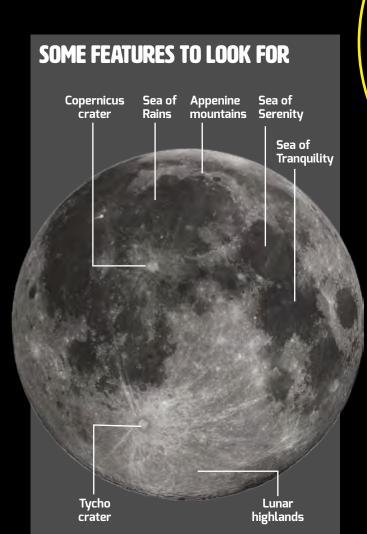
You can see lots of interesting features with the naked eye or a pair of binoculars. You can easily see the dark and light patches, which are the lunar 'seas' and highlands. You might even be able to see the giant Tycho crater.

DON'T I NEED A TELESCOPE?

Not really! Telescopes are great for looking at fine detail, but they are expensive and their position needs to be adjusted regularly to follow the Moon as it moves across the night sky.

The best way for a beginner to get a closer look at the Moon is with a pair of binoculars.

You may want to use a cheap pair when you start so you can familiarise yourself with the process.



REMEMBER: A magnified image can be a shaky image! This is because every movement of the binoculars is greatly exaggerated – if your hand is just a little bit wobbly, it might look like the Moon is shaking all over the sky! If you can mount your binoculars on a tripod, this will keep the image steady.

5 DISCOVER HOW TO LOCK OLD THE MODICINE

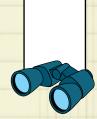
The best time to view the Moon is during the first or last quarter when sunlight hits the surface from the side, which casts shadows that highlight the Moon's features. The worst time is during a full Moon when sunlight hits the surface straight on, which bleaches out the features.

6.1 LINDSOME 1.1 LINDSOME 2.1 LINDSOME 3.1 L

HANDS ON THE MOON

6 A LUNAR FEATURES TICK LIST

The Moon is full of interesting features, but some are easier to spot than others. Using the map on the previous page, see how many of these features you can tick off this list. You will need binoculars to spot some of them (look for the binoculars symbol).

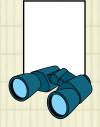

SEA OF TRANQUILLITY (MARE TRANQUILLITATIS)

This 500-mile wide, smooth basin was formed when a giant asteroid hit the Moon almost four billion years ago. It was the site of the Apollo 11 landing in 1969.

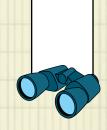
SEA OF RAINS (MARE IMBRIUM)

The Imbrium basin the largest basin on the Moon and one of the largest in the Solar System. It was formed from a collision with a proto-planet about four billion years ago.

APPENINE MOUNTAINS (MONTES APENNINUS)


Apennine Mountain were formed when the Imbrium basin was blasted out nearly four billion years ago. Mountain ranges on the Earth take millions of years to form, but these were created in a matter of minutes! The Apennines stretch out over 370 miles and include more than 3,000 peaks. The highest peak in this range is Mons Huygens.

SEA OF SERENITY (MARE SERENITATIS)


Apollo 17 astronauts landed on the edge of the Sea of Serenity and sampled some of the oldest rocks on Moon from here.

REMEMBER: The Moon is big and bright so it is much easier to see in the night sky than the stars, but you should still try to find a safe viewing location that is not brightly lit... and make sure you turn off your torches. It is important that you allow your eyes to adjust to the dark for about 20 minutes.

COPERNICUS CRATER

This is one of the most obvious craters on the Moon and is also one of the youngest – having formed less than one billion years ago. Its ejecta rays spread out across 500 miles.

TYCHO CRATER

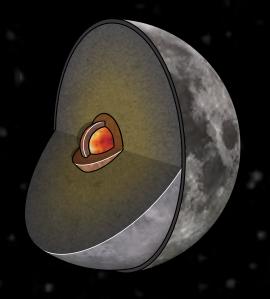
Formed only about 108 million years ago, this crater is even younger than Copernicus. It is also much bigger – the crater is 53 miles wide and its ejecta rays stretch over 1,200 miles! Tycho crater appears so bright because it is so young – over time, the bright ejected material darkens.

LUNAR HIGHLANDS

The lighter areas of the Moon's surface are the Lunar highlands. These are the oldest regions on the Moon – formed when the Moon's surface was still a sea of magma. Because they are so old, they are covered with billions of years of impact craters, which makes them very rough.

Once you've mastered your binoculars, you might want to get a more powerful pair or even a telescope. You can buy or download detailed Moon maps that will allow you identify all sorts of features as you explore the Lunar surface.

ACKNOWLEDGEMENTS


Science and Technology Facilities Council

CONTENT DEVELOPED AND WRITTEN BY

BEN GILLILAND

DESIGN, LAYOUT AND GRAPHICS: BEN GILLILAND

OTHER IMAGES: NASA, ESA

NATIONAL SPACE ACADEMY FOR ADDITIONAL CONTENT DEVELOPED BY DR KIERANN SHAH, SOPHIE ALLAN AND CHARLOTTE ISHAM

The Science and Technology Facilities Council operates world-class, large-scale research facilities; supports scientists and engineers world-wide; funds researchers in universities and provides strategic scientific advice to government.

The Council's Public Engagement Team offers a wide range of support for teachers, scientists and communicators to facilitate greater engagement with STFC science which includes astronomy, space science, particle physics and nuclear physics:

FOR SCHOOLS

- Free Publications and resource guides suitable for ages 10-18.
- Funding schemes for projects and school visits.
- A Moon rock and meteorite loan scheme.
- Visits to STFC's UK laboratories in Cheshire, Oxfordshire and Edinburgh plus CERN in Geneva.

www.ukri/stfc.org